

OCR (B) Physics GCSE

Topic 6.3 - How does the particle model relate to materials under stress?

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

When more than one force is applied to a solid object it can be...

When more than one force is applied to a solid object, it can become...

Compressed, stretched or twisted.

What is elastic deformation?

What is elastic deformation?

The object returns back to its original shape when stresses are removed.

What is plastic deformation?

What is plastic deformation?

When the object is permanently deformed; it no longer returns to its original form.

How does compression/stretching affect particle arrangement?

How does compression/stretching affect particle arrangement?

It changes the spacing and forces between particles.

What is Hooke's law?

What is Hooke's law?

The extension of an elastic object is directly proportional to the force applied to it.

(note: only within the limit of proportionality).

Describe a force/extension graph for an elastic material

Describe a force extension graph for an elastic material

It will form a straight line through the origin.

Gradient = k (spring constant)

What does the curved section of a force/extension graph represent?

What does the curved section of a force/extension graph represent?

Plastic deformation.

When work is done on a spring, what kind of energy is converted?

When work is done on a spring, what kind of energy is converted?

Elastic potential energy.

Give the equation for work done on a spring

Give the equation for work done on a spring

Where...

 $W = \frac{1}{2}kx^2$

W = work done (J)

K = spring constant (Nm)

X = extension (m)

